HOW TO’S

NanoBSD and ALIX

In the previous issue of BSD Magazine, Bill Harris described
how to do a basic installation of FreeBSD on a PC-Engines
ALIX board with a Compact Flash card. This is a great way to
get started, but there are some risks to this approach.

What you will learn...
- The working of and working with NanoBSD
« The creation of NanoBSD for an embedded system

What you should know...

« Your way around a FreeBSD system

« Basic system administration

« How to compile FreeBSD from source

C F cards can be written to only a limited number of
times so putting your /var and its logfiles on it, will
quickly wear out the card. To adress this issue and
others, Poul-Henning Kamp wrote a script called nanobsd.sh.
NanoBSD is not a fork from FreeBSD, but an optimized build
script for read-only media. This article gives an overview of

NanoBSD in general and my setup in more detail.

The working of NanoBSD

When NanoBSD boots, / (and its subdirectories like /boot,
/root a@nd /usr) are mounted as a read-only file system,
while /etc and /var are mounted as read-write file systems
on memory disks. The content of these memory disks is
lost when the power is lost or when the system reboots.

There is a partition on the NanoBSD CF card reserved
for the persistent storage of the /etc configuration files.
This partition is mounted early in the boot process as
/cfg and the files are copied to the /etc memory disk.
During normal operation the /czqg partition is not mounted
to prevent accidental writes to the configuration files. A
number of scripts are used to keep the /c£q4 partition up to
date with changed configuration files in /etc.

The CF card contains three partitions in total. The p3
partition is used for the persistent storage of configuration
files. The p1 and p2 partitions both contain a/file system.
This is very convenient for a system upgrade and roll-
back as we will see in a later section.

BSD

MAGAZINE

38‘

The building of NanoBSD

NanoBSD is built off-line, which means that the preparation,
build and installation process has no impact on the build
system or the live NanoBSD system. It will produce image
files that can be put on the CF card in the NanoBSD system.
There are a number of important files and directories.

nanobsd.sh

The script has been located in the FreeBSD source tree
since FreeBSD 6.0 and can be found in the /usr/src/too1s/
tools/nanobsd directory. Running the script with no options
will produce a disk image with a GENERIC kernel and a
complete world. A nanobsd.conf configuration file can be
used to tune the build process.

nanobsd.conf

This configuration file overrides defaults that are set in

the nanobsa.sn script. These defaults include the name, the

architecture, the world options and kernel configuration.
It is also possible to add custom script functions in order

to tune the system even further.

Adding ports and files

Because theffile system is read-only, ports have to be
added during the build process. All port files (distfiles) that
reside in the /usr/src/tools/tools/nanobsd/Pkg directory are
compiled and installed before the image file is created.

06/2011

NanoBSD and ALIX

The distfiles must be of the same architecture as the target
system and do not forget to install all dependencies as well!
These dependencies can be found in the port description
on the www.FreeBSD.org/ports page. Individual files that
reside in the /usr/src/tools/tools/nanobsd/Files directory are
copied before the image file is created.

Build process
With a source tree of the desired FreeBSD version in jusr/
sre, the commands

cd /usr/src/tools/tools/nanobsd
sh nanobsd.sh

will start the build process. The detailed output of the
process is written to logfiles and only high-level progress
status is written to the screen. All files are located under
/usr/obj/nanobsd.NaNoBsD. The most important files are

* .ow (build world logfile),

* .ok (build kernel logfile),

* .iw (install world lodfile),

* ik (install kernel lodfile),

. .aisk.fu11 (full disk image for the entire CF card)

* .disk.image (partition image for one partition on an
existing NanoBSD CF card)

If something did go wrong, the only indication, is the
termination of the script before an image file is created.
Reading the logfile of the last reported step will give
more info on the exact reason for failing.

If parts of the build process have already been
completed before the process failed, these parts can
be reused in the new build by specifying command line
options to nanobsd.sh:

-n — do not clean directories before building
-x — do not build kernel

-w — do not build world

-» — do not build anything

After the image file is created, it is transferred to the CF
card using a (generic USB) card reader. CF cards are
typically seen as ATA drives, so the device name will be
something like ad1 or ad2. Running

dd if=/usr/obj/nanobsd.NANOBSD/_.disk.full of=/dev/adl bs=64k
transfers the image file to the CF card. /dev/aa1 is the CF

card here. The created partition image can be mounted
directly by running

www.bsdmag.org

mdconfig -a -t vnode -f /usr/obj/nanobsd.NANOBSD/
.disk.image -u 1

mount -t ufs /dev/mdla /mnt

The /nnt directory now contains the root of the CF card’s
/ partiton. Unmount it by running

umount /mnt

mdconfig -d -u 1

Upgrading / Updating NanoBSD

One of the features of NanoBSD is the offline upgrade
and roll-back mechanism, allowing for upgrades to the
base system with only seconds of downtime.

The nanobsd.sh script generates two image files. One
full disk image and one partition image. In the previous
steps, the full disk image was used to fill a CF card. On a
running NanoBSD system, there is no need to remove the
CF card to perform an upgrade.

The second partition can be upgraded while the system is
running from the first partition. When the system is ready to
be rebooted (in the maintenance window), booting from the
second partition will start the upgraded system. Assuming
the first partition is the active partition, run

sh /root/upgradep2 < .disk.image

on the NanoBSD system to upgrade the second partition.
(/root/upgradep1 Will upgrade the first partition).

The system will be set to boot from this partition. When
the system is ready to be rebooted, reboot.

reboot

If the upgrade was unsuccessful, simply set the boot
partition back to the first partition and reboot.

The system will revert to the not-yet upgraded
partition.

bootOcfg -v -s 1 ad0
reboot

The active partition can also be selected using the [F7]
and [F2] keys during startup.

NanoBSD for ALIX
The following chapters will show my build system,
configuration files and caveats.

The hardware | used is the PC Engines ALIX 2D13
board. | had it lying around from my tests with prsense. It
has the following features:

MAGAZINE

BSD ..

http://www.FreeBSD.org/ports

HOW TO’S

Listing 1. The complete nanobsd.conf

NANO NAME=ALIX # directory will be /usr/obj/nanobsd.ALIX
NANO_DRIVE="ad0" # target drive for the CF card is ATA
NANO ARCH=1386 # architecture

NANO KERNEL=ALIX # kernel file

NANO BOOTLOADER="boot /boot0"

NANO BOOTOCFG="-o nopacket -s 1 -m 3" # ALIX boot options
NANO MEDIASIZE=1981728 # 1Gb Sandisk CF card

NANO SECTS=63

NANO HEADS=32

CONF_WORLD="
TARGET=1386
TARGET ARCH=1386
TARGET CPUTYPE=pentium-mmx
WITHOUT options can be inserted here
examples are WITHOUT BLUETOOTH, WITHOUT I4B and WITHOUT PROFILE
This function enables three tweaks for embedded systems
cust_embedded_setup ()
turn off ascii beastie as boot menu
echo 'autoboot delay="4"' >> ${NANO WORLDDIR}/boot/loader.conf
echo 'beastie disable="YES"' >> ${NANO_ WORLDDIR}/boot/loader.conf

turn on noatime for /cfg for more performance

sed -i "" -e "/cfg/s/rw/rw,noatime/" ${NANO WORLDDIR}/etc/fstab

No "message of the day" for me
rm ${NANO WORLDDIR}/etc/motd
touch ${NANO WORLDDIR}/etc/motd

customize cmd cust embedded setup

We only have a serial port for console

customize cmd cust comconsole

We allow root to ssh directly

customize cmd cust allow ssh root

Install files in /usr/src/tools/tools/nanobsd/Files
customize cmd cust install files

Install packages in /usr/src/tools/tools/nanobsd/Pkg

customize cmd cust pkg

MAGAZINE

BSD

40‘

06/2011

AMD Geode LX800 + glxsb hardware crypto
256 MB RAM

3 x VIA Rhine network interface (vr)

IDE CF card slot (master)

IDE 44-pin interface (slave)

RTC /USB /12C / Serial ports

An ideal board for a dedicated firewall/VPN appliance
and so much more. My build system is a virtual machine
on my laptop running FreeBSD 8.2 amd64 on scsi disks.
This means we will have to cross compile, as the ALIX
board has an i386 architecture and an IDE disk interface.

NanoBSD config

The most important configuration aspects for the ALIX
platform are the target architecture (i386), the target drive
(ad0) and the bootoptions (-0 nopacket).

We also have to specify the size of the CF card in
sectors. This can be tricky, as the values of the sectors
and heads of the CF card are often reported incorrectly
by the various system tools. We start with the number of
blocks. Running

diskinfo /dev/ad0

/dev/ad0 512 1014644736 1981728 967

will give a NANO _ MEDIASIZE of 1014644736 / 512 = 1981728
blocks. (diskinfo sees 967 cylinders, 64 sectors and 32
heads.) The safes way to fill the vano sects and wano
neaps IS to put the CF card in the ALIX board and boot
from it (see the booting section below). It will report

PC Engines ALIX.2 v0.9%h
640 KB Base Memory
261120 KB Extended Memory

01F0 Master 044A CF 1GB
Phys C/H/S 1966/16/63 Log C/H/S 983/32/63

So the system thinks the card has 983 logical cylinders, 32
heads and 63 sectors. That's what we have to work with.
The complete nanobsd.conf looks like this: see Listing 1.

The cust_emoedded_setup function will turn off the beastie
ascii art, set the boot delay to 2 seconds and remove the
motd (settings I like on my headless platforms).

Kernel config

A GENERIC kernel works fine for ALIX boards, but we can
tune the configuration for a leaner kernel with hardware
crypto enabled. The processor is 586 (pentium-mmx)
compatible

www.bsdmag.org

Visit our
website

You will find here:

materials for articles-

listings, additional
documentation, tools

the most interesting
articles to download

nformation

current _in
on the upgoming
issue g’

-

http://bsdmag.org

HOWTO’S

Special thanks

Poul-Henning Kamp for giving us NanoBSD. He doesn't like personal pages, but this is his real one: http://people.freebsd.org/~phk/
pfSense for getting me interested in NanoBSD and for providing all my firewall needs: http://www.pfsense.org

Paul Schenkeveld for performing excellent work on the use of NanoBSD and extending the use to regular production servers with
ZFS and Jails. http://www.psconsult.nl/talks/NLLGG-BSDdag-Servers/

PC-Engines for their nifty boards: http://www.pcengines.ch/

cpu 1586 _CPU
ident ALIX
options CPU_GEODE

The network interface is a VIA Rhine, so only the vr and
miibus devices are needed.
miibus

device # MII bus support

device vr # VIA Rhine, Rhine II

Memory disks are an essential part of NanoBSD.

device md # Memory ,disks”

The Geode processor has a hardware crypto module,
so we need to enable the glxsb, crypto and cryptodev
devices.

device crypto # core crypto support
device cryptodev # /dev/crypto for access to h/w
device glxsb # AMD Geode LX Security Block

Booting for the first time

After creating the CF card an inserting it into the board,
connect a serial cable and start a terminal program. | like
to use the screen command for this

screen /dev/tty.PL2303 38400

(Yes, | use a Prolific serial-to-usb converter here.)

The ALIX boards run 38400,8,n,1 out of the box, so the
terminal program has to work at this baud rate. The first
thing | do is set it to 9600 baud by hitting the s key during
the memory test and pressing the o key for 9600 baud.
Save the config and restart the terminal program

screen /dev/tty.PL2303 9600

ALIX boots and we are presented with a choice. [F7]
for FreeBSD or [F2] for FreeBSD. These are the two
partitions on the CF card that both contain the / file
system.

This is the moment to chose which partition to boot if an
upgrade of a partition completely failed.

BSD

MAGAZINE

42

Configuring the live system

The configuration of NanoBSD is equal to configuring
FreeBSD. You can revert to Bill Harris’ article in the
previous issue for a quick start.

Because the / file system is read-only and the /etc file
system is a memory disk, it is very important to sync the
configuration files in /etc to /cfg after changes. There is
a number of scripts in the /root directory to help with this
synchronisation.

change password change the root password and sync it to /cfg
save cfg sync changed files in /etc to /cfg

save sshkeys sync changed ssh keys in /etc/ssh to /cfg/ssh

updatepl update the first partition with a new
partiton image
updatep2 update the second partition with a new

partition image

Paul Schenkeveld wrote an excellent sync script called
cfgsync that will automatically sync all content of /etc,
including subdirectories (see the special thanks section
below).

Where do we go from here?
After playing with embedded systems, | wondered if it was
possible to use this concept on my production servers as
well. As it turns out, Paul Schenkeveld has had that same
idea and extended it with ZFS (see BSD Magazine issue
02/2011) and Jails for a server with near-zero downtime,
even for full systems or ports upgrades. He wrote a
paper on it and gave talks at AsiaBSDcon2010 and the
Dutch NLLGG in December 2010. If you are interested in
NanoBSD, | strongly recommend reading his paper.
There are also a number of well-known projects that
use NanoBSD as their base. Examples are the pfSense
firewall (see BSD Magazine issue 02/2011) and the
FreeNAS file server (again, see BSD Magazine issue 02/
2011).

ERWIN KOOI

Erwin Kooi is an information security manager for a large grid
operator. He started with FreeBSD 4.4 and is an avid fan ever
since.

06/2011

http://people.freebsd.org/~phk/
http://www.pfsense.org
http://www.psconsult.nl/talks/NLLGG-BSDdag-Servers/
http://www.pcengines.ch/

	Cover

	Here it is!
	Contents
	Introduction to OpenSSL:
Command-line Tool
	BSDCan 2011
	Introducing
FreeNASTM 8.0
	A Puffy In The Corporate Aquarium Success story: OpenBSD as an Enterprise Desktop

	DragonFly News
	Installing FreeBSD with
PC-SYSINSTALL
	An introduction to GIS on
FreeBSD
	Exploring The Powers Of The Cloud Deploying Eyeos On BSD

	NanoBSD and ALIX
	Mutt On OS X Part III

	OpenBSD Networking
	OMAP3 Full Support is
Coming Soon in FreeBSD
	What It Takes
Starting and Running an Open Source Certification Program, Part I
	Interview with
Rafał Jaworowski

